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of Germany 
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Abstract. The continuum-continuum transition matrix elements of the scalar and vector 
potentials of a pure Coulomb field with exact Dirac wavefunctions can be expressed in 
terms of generalised hypergeometric functions of two variables denoted as Appell functions. 
The domain of physical interest for the variables exceeds the convergence region of the 
original double sum. A method for analytical continuation of the Appell functions is given 
together with a recipe for their fast calculation. 

1. Introduction 

In  atomic physics the Coulomb force plays the dominant role. A useful feature of this 
force is that the wavefunctions with a central pure Coulomb potential can be given 
analytically, at least for a one-electron problem, for bound states as well as for 
continuum states needed in collision theory. This holds true for the non-relativistic 
Schrodinger equation (see textbooks on quantum mechanics, e.g., Schiff (1968)) and  
also for the relativistic Dirac equation (Bethe and Salpeter 1957, Rose 1971). Matrix 
elements of a Coulomb field operator with these wavefunctions can be reduced by 
some angular momentum manipulations and integration over angles to one-dimensional 
radial integrals over products of radial wavefunctions with spherical Bessel functions 
(Jamnik and  Zupancic 1957, Amundsen and Kocbach 1975, Amundsen 1978, 
Jakubassa-Amundsen 1982). Here we are interested in continuum-continuum transi- 
tion matrix elements for relativistic Dirac wavefunctions. The corresponding non- 
relativistic case was extensively treated by Baur and Trautmann (1974, 1976). 

In both relativistic and non-relativistic cases, the interesting radial integrals can be 
written as a finite sum over generalised hypergeometric functions denoted as Appell 
functions (Appell and KampC de Feriet 1926, Almstrom and Olsson 1967, Wright et 
a1 1977). The aim of this paper is threefold: first, in S 2, we express the relativistic 
Coulomb integrals by a sum over Appell functions. The derivation differs somewhat 
from the non-relativistic case because of non-integers replacing the non-relativistic 
principal quantum numbers. Second, in 0 3, we derive for the group of four Appell 
functions, involved in the evaluation of the Coulomb integrals, a system of linear 
coupled differential equations which are of Fuchsian type (Walter 1976). The analysis 
of the solutions gives us the analytic continuation of the Appell functions needed for 
the interval of physical parameters. Finally, in B 4, we give the recipe for a fast 
calculation of the Appell functions and also of the Coulomb integrals for relativistic 
continuum-continuum transitions. 

0305-44701871165447 + 12$02.50 0 1987 IOP Publishing Ltd 5447 
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2. Form factors with relativistic continuum functions 

It can be shown (Amundsen and Aashamar (1981), for further references see Trautmann 
er a1 (1983) and  Becker er a1 (1986)) that the coupling matrix elements of the 
Lienard-Wiechert potentials of a classically moving point charge of a projectile nucleus 
with Dirac wavefunctions centred at the target nucleus involve radial integrals (the 
form factors) of the type 

Here, g and  f are radial functions of the larger and smaller components of the Dirac 
spinor for two states with index f and i, respectively; j, is the spherical Bessel function 
of the first kind. The parameter s ranges from the minimum momentum transfer 
q = I,!?,- E , l / u  to infinity in first-order perturbation theory. E, and E, are the energies 
of the statesf and i, respectively, and U is the relative velocity of the projectile and target. 

For coupled-state calculations the lower bound of s is zero. It should be noted 
that for the final results an  integration over s is necessary. Therefore a fast recipe is 
needed to calculate the form factors. 

If at least one of the states labelled i or f is a bound state, integrals (1) yield finite 
sums over hypergeometric functions (Amundsen 1978). We are interested in couplings 
between continuum states. Then the radial wavefunctions can be represented in natural 
units ( h  = c = m = 1) by (Rose 1971) 

g =  N(IEJ*1)”2ry-’ Re(e-IP‘ e “ ( y + i q )  , F I ( l + y + i q , 2 y + l ,  2ipr)) 
(2)  

f = F N (  1 ElT 1)1’*rY-l Im(e-””e”(y+iq)  , F l ( l + y + i q ,  2 y +  1,zipr)) .  

The upper signs hold for the positive continuum ( E  > 1)  and the lower signs for the 
negative continuum ( E  < -1). Further 

y =[K2-(ZTa)2]1/* p = ( E 2 - ] ) ’ / 2  77 = ZTffE/P 
( 3 )  

e2I6 = ( -K  + i q /  E )/( y + i q )  

where a is the fine structure constant and Z, is the charge number of the target nucleus. 
The quantum number K is related to the quantum numbers of the total momentum j 
and  the angular momentum I of the large component as follows: for K > 0, j = K -+, 
I = K  and for K < O , ~ = - K - $ ,  I = - K - ~ .  Inequations (2) ,Fl is theconfluenthyper- 
geometric function. 

The index I of the Bessel function in the form factor Fj”’ in (1) is not free to vary 
but is restricted by angular momentum conservation. It yields: 

N = exr1/2 ~ r ( y + i q ) ~ 2 y p y - ” 2 / ( n ‘ / 2 r ( 2 y +  1)) 

for v = 1 11, - r,l s Is I ,  + I /  and / I - j , l s j , c l + j ,  (4a )  

with / l - - l l<  L s I + l  (4b) 

for u = 2  I I ,  - 1;1 c I s I ,  + 1; and lL-j,l ~ j ,  5 L + j ,  
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for v = 3  11; - 1,l s 1 s 1 ;  + 1, and l L - j , l ~ j , ~  L + j ,  

with I l - l I S L S l + l  (4c) 
where 1: and 1; are the quantum numbers of the angular momentum of the small 
components. From (4) it may be deduced that the maximum index is 

4” = /K,I + IKfI. (5) 
In the following we restrict ourselves to the case that E, and E, are both positive. The 
other cases differ only in the signs of E,, q, or E,, qf and possibly in a total minus sign. 

Fj”(s)  = i N I N f { [ (  E,+ 1)( E, + 1)]’12 Re(I:i’(s) + I x ’ ( s ) )  

- [ (E,- l ) (Eg-l)]”2 Re(Z$)(s)-Zx)(s))} (6a)  

F j 2 ’ ( s )  = - f N I N f [ ( E , + l ) ( E , -  1)]1/21m(I>t)(s)+I:f)(s)) (66) 
FJ”(s) = - f N I N , [ ( E l  - 1)(Ef+1)]1’2 Im(Z>i)(s)-Zx)(s)) ( 6 ~ )  
where we have put 

I:: )( s ) = ZJZ, lor d r r y f +  ’9, ( sr ) exp[ -i ( p f  + pI ) r ] I F, ( 1 + yf + i q,, 2 y, + 1, 2ipfr) 

Inserting (2) into (1) we obtain 

x 1F1(1+ Y, + i % ,  2Y, + 1,2ip,r) (70) 

I : ; ? ’ ( s ) = Z f Z ?  drrYf+Yj , ( s r )  exp[-i(p,-p,)r] I F , ( l + y f + i q , ,  2yf+ l,2ipfr) 

( 7 b )  
i: 
x [ ,F , (1+ YI +i%,  2Y, + 1,2ip,r)l* 

with the abbreviation Z = e”(y+iV).  For the further treatment of the integrals in (7) 
we enhance the convergence of the integrals at the upper limit by replacing exp[-i( p, * 
p,)r]  by exp{-[F + i (  pf*pl)]r} with E > 0. In our final results we have to take the limit 
E + O .  A similar procedure was used by Baur and Trautmann (1974) in the non- 
relativistic case. The uniform convergence of the integrand with E to the one without 
E guarantees the correctness of the final results. Since y, + y, > 0, there are no problems 
at the lower integration limit. But, in contrast to the non-relativistic case, yj + yI is 
non-integer. On the other hand, precisely this fact gives us the possibility to write 

I ” ’  ( s )  = Z f Z ,  lim{exp[2rri(yf+y,)]-1}-’ dzzYf+Yj/(sz)  exp{-[s+i(pf+p,)]z} 

(8) 

I, r - + O  

x l F l ( 1 + ~ , + i ~ , , 2 ~ , + 1 , 2 i p ~ z )  l F l ( 1 + ~ , + i q , , 2 ~ I + 1 ,  2ip,z). 
Here, C is a path in the complex z plane which follows the real axis from z = +CO+ iS 
to zero, encircles the origin anticlockwise and returns back along the real axis to 
z = +CO - is. 

The expansion of the Bessel function (Watson 1966) 

1 ( l + n ) !  1 
2x ,,=O n ! ( / - n ) !  (2x)“ j , (x)  =- C [ex p( ix ) in - ‘- + e x ~ (  -ix ) i‘+ I ( 9 )  

inserted in (8) leaves us with a sum over integrals of the type 

I ,  = lim {exp[2.rri(yf+y,)]- l}-’ dzzYI+Y,-n-’ exp[ -( E + iq)z] 
F-+n I, 

x lFl(1+r,+i’7/,2y,+l,2ip,z) l F l ( 1 + ~ , + i q , , 2 ~ , + l , 2 i p , ~ )  (10) 
with q=p,+p,+s .  
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Using for , F ,  the integral representation of the confluent hypergeometric functions 
(Abramowitz and Stegun 1972) 

with the condition Re b > Re a > 0, which is fulfilled in our case, changing the order 
of integrations, and identifying the contour integral as proportional to a r function 
for non-integer arguments (ErdClyi 1953) 

for a # 0, *I, *2,. . . and - ~ / 2  < arg =$< ~ / 2 ,  which is also fulfilled for E > 0, we are 
left with the following expression for I,,: 

x lo1 lo1 UY,+lv,(l -u)Y,-'v,-l U Y,+'Vj(1 - ")Y,- iv/- l  

x ( 1  - U ~ - v u y ) - ( Y ' + Y / - n )  du  dv (13) 

with 2 = i 2 p , / ( s + i q )  and j = i 2 p l / ( & + i q ) .  
Finally, the double integral together with a part of the factor is an integral representa- 

tion of Euler's type for a generalisation of the hypergeometric functions, in our case 
one of the Appell functions (Appell and KampC de Feriet 1926): 

Z, = lim r(y'+ :Tyri F2(yr+ y, - n, yl + 1 + i q ,  y f +  1 +ir],, 2y, + 1, 2y f+  1; 3, J ) .  
F - + o  ( E  +iq )  

(14) 
In fact, the identity of the contour integral in (10) with the right-hand side of (14) is 
a special case of a more general formula given already by ErdClyi (1936). 

Defining the following abbreviations: 

where 

X =  2Pl 2P/ 
pI+pf + s + i E  = p, +pf + s + is 

P ' =  Y, -iv y = 2 y, + 1 y r = 2 y r +  1 a = yf + y, - n P = y - '  I '71 

we may write, using (14) and (9) in (8) and in the analogous expression for ZK),  
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( I + n ) !  zpy s) = z,z: [ 2 4  p ,  + p, + S ) Y ’ + Y T I  1 
n = O  n ! ( I - n ) !  

( 1 6 6 )  [ i Y, + Y ,  - 1 -  I Fy’ + i I+ 1 - Y ,  -Y, ( F:3’)*]. 

The arguments x and y are to be taken in the limit E + +O. The fact that the arguments 
x and y are the same in all F2 functions is due  to transformations of Euler type, valid 
for the Appell functions (ErdClyi 1953) .  The Euler-type transformations in turn 
originate from Kummer transformations for the F,  functions. According to Kummer 
transformations, for instance, the integral (8) remains unchanged if one replaces in 
the integrand simultaneously p t  by -pI  and 1 + iv ,  by -iv,, or p f  by -PI and 1 + ivf 
by --iTf, or both. 

As mentioned before the lower bound for the numerical integration over s is zero 
in coupled-states calculations. Evidently s + 0 leads to numerical difficulties in ( 1 6 ) ,  
which were introduced by the expansion ( 9 )  into the otherwise well behaving integral 
(8). For very small s an expansion of j , ( s r )  in a power series of the argument is 
preferable. This leads to the formula 

2 n  

( F Y ’ ( a  = y, + y, + 1+2n + 1 ;  x(s = O), y ( s  = O)))* ( 1 7 )  

and a similar expression for Z:f’(s) with 2, replaced by 2; and ( F y ’ ) *  replaced by 
(Fi3’)*.  The arguments of the F2 functions are the same as defined in ( 1 5 )  besides 
C Y ;  x and y are to be taken for s = 0. The series ( 1 7 )  is convergent for s < p I  + p r ,  whereas 
the series with Fi3’ only converges for s < ( p f - p , l .  This follows from the ratio test 
together with the reduction formula of Jaeger and Hulme (1935)  for the F y ’  functions 
(see the next section). 

3. Evaluation of the Appell functions 

The original defining power series for the F2 functions (Appell and  Kampt! d e  Feriet 
1926) 

is convergent only for 1x1 + ly( < 1 .  We see from ( 1 5 )  that this is equivalent to p i  + p f  < 
s ( s  2 0) for E -+ +O. Since we need also small values of s < pI  +el we have to look for 
an analytical continuation. 

In the notation of equations (15) and by showing the dependences on the parameter 
CY and arguments x and y explicitly, the following reduction formula holds (Jaeger 
and Hulme ( 1 9 3 9 ,  with or without the limit E + +O): 

F : ” ( a + l ;  x , y ) = ~ A : ” F ~ ’ ( a ;  x , y ) .  
I 

This may be proved by using ( 1 8 )  or, better, with the aid of the double integral 
representation (ErdClyi 1953) already used to obtain equation ( 1 4 )  from ( 1 3 ) .  
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The A:” are 

a + p + p‘  - y - y’ + 2 
(1 - x - y ) a  

AY) = 

Furthermore, we may write 

FkI’ = F2(a, P, P ‘ ,  7, Y‘; x, y )  

(21) 
- - Sc dzz“- l  exp[-(E +iq)zI ,F , (P ,  Y, 2ip,z) ,F , (P ‘ ,  Y’, 2ipfz) 

1, dzz”- ’exp[- (e+iq)z]  

with q = p , + p , + s  and x and  y as given in (15). Similar expressions hold for FYI, 
Fi3’ and FYI. We note that this expression can also be used for positive integer values 
of a = 1 ,2 ,3 ,  . . . , if we replace the contour integral by Sr d z .  . . . 

In fact, equation (21) is even correct for a =0,  -1, -2, .  . . . Then F y ’ ( a ;  x, y )  are 
polynomials in x and y which follows directly from the double sum due  to the property 
of the Pochhammer symbol 

(-M)M+I = o  f o r M = 0 , 1 , 2  , . . . .  

We take the derivative of F2 with respect to q or equivalently with respect to s. From 
(21) we obtain 

In parentheses we have indicated the dependence of F2 on the parameter a. The other 
parameters d o  not change. Combining (19) with (20) and (22), introducing a column 
vector F2 with the components Fill, F i 2 ) ,  Fi3’ ,  Fy’ and carrying out the limit E + +0, 
we get a system of coupled differential equations for the F i g )  which we may write in 
matrix form as (Becker et a1 1986) 

This system is of Fuchsian type (Walter 1976). The four poles qk lie on the real axis. 
We have 

q1 = +io q2 = 2p, - io q3 = 2pf - io q 4  = m, + P I )  - io. (24) 
The addition of *io is the remainder of the limiting process E + + O  and gives the 
prescription how to treat the vicinity of the poles if necessary. Although an  extension 
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of the methods presented here to complex q values is possible, we are primarily 
interested in real q values because of the physical application given in 9 2. As long 
as E >O, though small, a pole can be passed, e.g., at  q 4 = 2 ( p , + p f ) - i &  from q = 
Re(q4) - 6 to q = Re(q4) + 6, on the real axis without any numerical or conceptual 
difficulties. In  the limit E + +O also the limit of this regular behaviour has to be taken. 

The four matrices R, are easily constructed. We only write down the non-vanishing 
matrix elements: 

R,:  R I * I I = P + P ’  Rl.12 = - P  R l , 1 3  = -P ’  R1,22 = R1.33 = R1.44 = 

R2 1 R z , 2 l = l + P - Y  R2.22 = y + P ’ -  P - CY - 1 R2,24  = - P ’  
(25) 

R3 : 

R4 : 

R3,31 = 1 + p ’ -  y’ R3.33 = y’+ p - P ‘ -  LY - 1 R3.34 = - P  

R4.42 = 1 + p’ - y’ R4.43 = 1 + P - Y R4.44 = y + y’- 2 - cx - P - P ’ .  

The aim is now to obtain a fundamental system for the differential equation (23), 
i.e. a set of four independent solutions for all q or s values needed for the physical 
problem mentioned in 0 2. The F2 functions are a special solution and, therefore, a 
linear combination of the fundamental solutions. 

As the general theory shows, the fundamental solutions can be written about each 
pole qk as a series of the form 

In our case the C, are constant column vectors as demonstrated below and only in the 
worst case, for p, =pf, of the structure C, = uf In(q - qk)+ b,. The series (26) are 
absolutely convergent in the region (Walter 1976) 

14 - qkl< $:lq, - qki. (27) 

To be definite, let us assume that pr  > p, > 0. Then we obtain the situation depicted 
in figure 1. 

The regions of convergence of the series (26), shown in figure 1 and  denoted by 
the encircled numbers 1, 2, 3 and 4, are given by (24) and the criterion (27). The 
region 5 tending to infinity is due  to the convergence criterion of the original expansion 
(18). In  fact, q = CO is also a weak singularity of the differential equation (23) and an  
expansion similar to (26) (in l / q )  with appropriate coefficients is equivalent to the 

o f  physical interest 
r .- 

I - -  I 1 1 1 
I I I I I I W 

- 2P, -2P, -2P,  0 2P, 2Pf 2 4 * 2 P f  q 

Figure 1. Convergence regions of the series (26) and of the original expansion (18). For 
further explanation see text. 
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double sum (18). We note that the region of physical interest, 0 s s < m or  p i  + p f  s q < 
00, is completely covered by the regions 3, 4 and 5 .  Nevertheless, a n  extension to all 
q values might be of mathematical interest. We see that the region 6, -2p,  - 2pf =s q s 
-2p i ,  has no series expansion of the types considered. We may obtain values of F2 
for such q values by using the Euler transformation (ErdClyi 1953) 

F2(a,  P ,  B’, Y ,  Y‘; x, U )  

( 2 8 )  

which transforms q to q’ = 2p ,  + 2pf - q. Therefore, the arguments of the right-hand 
side of ( 2 8 )  are in the convergence regions of the double sum for -2p,  - 2pf < q s - 2 p , .  

3.1. The fundamental solutions of equation (23) for the non-degenerate case p ,  # p ,  

Inserting the ansatz F = XFs0 ( q  - q k ) ’ + *  C, into the equation d F / d q  = 
Z;=, ( q - q / ) - I R / F  and multiplying by the product IIP=, ( q - q l )  we obtain 

The equation which determines A and CO is obtained from the coefficients of the lowest 
power in q - q k  as 

for j = 1 , 2 , 3 , .  . . , with C- ,  = C2 = 0, and where we have put 

zi = q k  - q r ,  r, # k i = 1, 2,3. 

Obviously the recursion formula works well as long as A + j  is no eigenvalue of Rk 
for j a  1 .  

In the following we give the eigenvalues and  possible vectors CO for all Rk.  
k = 1 .  The pole is q1 = 0 (s ,  = -p, -p , - ) .  
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From ( 3  

and further 

), (25) and ( 1 5 )  we have ( ~ u - A ) ~ ( / 3 + / 3 ’ - h ) = O ,  from which we obtain 

Ai.2.3 = CY = ~ f +  Y! - n (33a)  

from (30) ,  if we write C,,o for CO corresponding to A, ,  we have the 

A 4 = P + P ‘ =  r l + x - i ( v f + v 2 )  

independent solutions 

1 CI.0 = 
1 
0 

\ 0 

CZ.0 = 

(33b)  

0 
1 
0 

k = 2. The pole is q2 = 2p, ( s2 = p, -pf). The eigenvalues are 

A1.2.3 = A 4 = / 3 ’ + y - P  - C Y  - 1 = n - i (vr -v l ) .  

A set of independent solutions to (30)  is 

k = 3. The pole is q3 = 2p, (sj = p, -p,). The eigenvalues are 

A 1.2.3 = A 4 =  /3 + y ’ - p ’ -  a - 1 = n +i(v, - 7,) 

and a set of independent solutions is 

k = 4. The pole is q4 = 2p, + 2pf (s4 = p, + pf). The eigenvalues are 

A 1,2,3 = 0 A 4  = y + y ’ -  2 -a - /3 - /3’ = n + i( vf+ 7,) (36~) 
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and a set of independent solutions is 

In each case the higher expansion coefficients can be calculated from the recursion 
relation ( 3 2 ) .  

3.2. The fundamental solutions of equation (23) for  the degenerate case p t  = pf  

If we have p I  = p, which means for E, and E,> 0 also E, = E,, we obtain v1 = t7/ from 
( 3 ) .  Equations ( 3 4 a )  and ( 3 5 a )  show that h , , 2 , 3 + n  is an  eigenvalue of R2 or  R 3 ,  
respectively. Therefore, the recursion relations ( 3 2 )  break down. We have to look for 
another set of independent solutions of ( 2 3 )  in the neighbourhood of the pole q2 = q3 = 
2p , .  With the ansatz ( 2 6 ) ,  but letting the coefficients C, depend on q in the form C, ( t )  
with 

q - 2 p  = exp( t )  ( P  = PI = P , )  ( 3 7 )  

we have from (23) the new recursion relation 

4 p 2 { [ R 2  + R3 - ( A  + j ) l ] C ,  - Ci} + 2 p (  R ,  - R4) C , - ,  

+[- (RI  + R2 + R3 + R4) + ( A  + j  - 2 ) 1 ] C , - ,  + C;-* = 0 ( 3 8 )  

for j = 0 , 1 , 2 , .  . . . , with C-, = C-2 = CY, = CL, = 0, where the prime means differenti- 
ation with respect to t. 

First, we try to find solutions of the same kind as before, that is, we put C: = 0 for 
j 2 0 .  From the characteristic equation for A and CO,  

( R , +  R3 - A 1)C,=O (39) 

we find 

for instance, 

= 0 and h3,4 = n. 
It is readily seen that for n solutions of the desired kind are obtained with, 

The recursion relation with Ci = 0 and = 0 breaks down for j = n if n > 0. For 
n = 0 no further linear independent column vectors, besides those given by ( 4 0 ) ,  can 
be constructed. 

Therefore, we have to consider the case Ci # 0 and  have to distinguish between 
n > O  and n = 0 .  
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For n > 0 we proceed as follows. We put (7 ,  = T ,  = 7 )  

which both solve (39) for A = 0, and we use (38) with CL,, = 0 ( k  = 1 , 2 )  up to j = n - 1. 
We set 

c k , ~  = a k ,  + b k j  (42) 

(R2+ R3 - n l ) ( a h , n l  + b h , n )  - a h , n  = d h  (43 1 
for j B n and have from (38) 

where dk is a known column vector dependent on the choice of c k , ( ) .  

A solution of (43) is provided by the vector 

For j > n the formula (38) provides no further problems 
For n = O  we start with 

for which we find the two independent solutions 

The higher coefficients are determined from (38) with (42).  In the latter case we have 
two solutions with a logarithmic singularity at q = 2 p .  

Two remarks may be added. Firstly, the degenerate case p, = p, for E, = -E ,  leads 
to 7, = -vt  and, therefore, the pole q = 4p has to be treated separately (see ( 3 6 ~ ) ) .  
This can be done in the manner outlined above. 

Secondly, functions of the type Z*  for non-integer or complex A as well as In z are 
multiple valued in the complex plane, even on the negative real axis. Thus, in using 
the expansions in the vicinity of a pole qh and going from q > qh to q < ql, it is necessary 
to fix the phase. We have the two possibilities q - q k  = 19 -qkl eLla for 9 < 9 h .  The 
decision is made by (24), from which it follows that we must use el'' for q 2 ,  q 3 ,  q4,  
and e-'" for q 1  . 

4. Numerical procedure for the calculation of the Appell functions 

Since the four Appell functions Fz defined in (15) solve the equations (23), they are 
expressible by the systems of fundamental solutions obtained in 3. I f  we distinguish 
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the independent solutions within the fundamental system by a superscript and use a 
subscript i to indicate the pole q1 : Flk ’ ,  then we have 

4 X 

F 2 =  B t ’ F i k ’  with F l k i = ( q - q l ) * : ’  ( q - q l ) ’ C t , : .  (47) 
h = l  , = ( I  

Flki  and BL’ are different for each pole 9,. We have q - q, = s - s, with s, = q, - p I  -p , .  
A practicable procedure for calculating F2 for all s values arising in a numerical 

integration of the form factors (1) over s could be the use of the most appropriate 
expansion in the regions 2, 3, 4 and 5 of figure 1. Note that the regions 1 and 6 are 
not needed in the physical application. The determination of the coefficients BL’ is 
easily accomplished since the convergence domains overlap. Thus, beginning with the 
double sum (18) in the intersection of region 4 with 5 we obtain BL4’. The continuation 
of F2 with (47) for i = 4  allows the determination of Bi;“, and so on. 

Because of the many s values needed for an accurate evaluation of the scattering 
matrix elements, in practice it is faster to use the series only well within the convergence 
domains and to bridge the gaps by a fast numerical integration program for the coupled 
linear differential equations (23). 
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